Note:
This topic has been translated from a Chinese forum by GPT and might contain errors.Original topic: 统计信息收集失败显示:[tikv:1317]Query execution was interrupted错误

[TiDB Usage Environment]
Test/PoC
[TiDB Version & Cluster Information]
Cluster version: v6.5.0
Deploy user: tidb
SSH type: builtin
Dashboard URL: http://xxx.xxx.xxx.xxx:2379/dashboard
Grafana URL: http://xxx.xxx.xxx.xxx:3000
ID Role Host Ports OS/Arch Status Data Dir Deploy Dir
xxx.xxx.xxx.xxx:9093 alertmanager xxx.xxx.xxx.xxx 9093/9094 linux/x86_64 Up /tidb/alertmanager-9093/data /tidb/alertmanager-9093
xxx.xxx.xxx.xxx:8300 cdc xxx.xxx.xxx.xxx 8300 linux/x86_64 Up /tidb/cdc-data/cdc-8300 /tidb/cdc-deploy/cdc-8300
xxx.xxx.xxx.xxx:8310 cdc xxx.xxx.xxx.xxx 8310 linux/x86_64 Up /tidb/cdc-data/cdc-8310 /tidb/cdc-deploy/cdc-8310
xxx.xxx.xxx.xxx:8300 cdc xxx.xxx.xxx.xxx 8300 linux/x86_64 Up /tidb/cdc-data/cdc-8300 /tidb/cdc-deploy/cdc-8300
xxx.xxx.xxx.xxx:8310 cdc xxx.xxx.xxx.xxx 8310 linux/x86_64 Up /tidb/cdc-data/cdc-8310 /tidb/cdc-deploy/cdc-8310
xxx.xxx.xxx.xxx:3000 grafana xxx.xxx.xxx.xxx 3000 linux/x86_64 Up - /tidb/grafana-3000
xxx.xxx.xxx.xxx:2379 pd xxx.xxx.xxx.xxx 2379/2380 linux/x86_64 Up /tidb/pd/data /tidb/pd
xxx.xxx.xxx.xxx:2379 pd xxx.xxx.xxx.xxx 2379/2380 linux/x86_64 Up|L|UI /tidb/pd/data /tidb/pd
xxx.xxx.xxx.xxx:2379 pd xxx.xxx.xxx.xxx 2379/2380 linux/x86_64 Up /tidb/pd/data /tidb/pd
xxx.xxx.xxx.xxx:9090 prometheus xxx.xxx.xxx.xxx 9090/12020 linux/x86_64 Up /tidb/prometheus-8249/data /tidb/prometheus-8249
xxx.xxx.xxx.xxx:5001 tidb xxx.xxx.xxx.xxx 5001/10081 linux/x86_64 Up - /tidb/tidb1
xxx.xxx.xxx.xxx:5002 tidb xxx.xxx.xxx.xxx 5002/10082 linux/x86_64 Up - /tidb/tidb2
xxx.xxx.xxx.xxx:5003 tidb xxx.xxx.xxx.xxx 5003/10083 linux/x86_64 Up - /tidb/tidb3
xxx.xxx.xxx.xxx:5004 tidb xxx.xxx.xxx.xxx 5004/10084 linux/x86_64 Up - /tidb/tidb4
xxx.xxx.xxx.xxx:5001 tidb xxx.xxx.xxx.xxx 5001/10081 linux/x86_64 Up - /tidb/tidb1
xxx.xxx.xxx.xxx:5002 tidb xxx.xxx.xxx.xxx 5002/10082 linux/x86_64 Up - /tidb/tidb2
xxx.xxx.xxx.xxx:5003 tidb xxx.xxx.xxx.xxx 5003/10083 linux/x86_64 Up - /tidb/tidb3
xxx.xxx.xxx.xxx:5004 tidb xxx.xxx.xxx.xxx 5004/10084 linux/x86_64 Up - /tidb/tidb4
xxx.xxx.xxx.xxx:5001 tidb xxx.xxx.xxx.xxx 5001/10081 linux/x86_64 Up - /tidb/tidb1
xxx.xxx.xxx.xxx:5002 tidb xxx.xxx.xxx.xxx 5002/10082 linux/x86_64 Up - /tidb/tidb2
xxx.xxx.xxx.xxx:5001 tidb xxx.xxx.xxx.xxx 5001/10081 linux/x86_64 Up - /tidb/tidb1
xxx.xxx.xxx.xxx:5002 tidb xxx.xxx.xxx.xxx 5002/10082 linux/x86_64 Up - /tidb/tidb2
xxx.xxx.xxx.xxx:5001 tidb xxx.xxx.xxx.xxx 5001/10081 linux/x86_64 Up - /tidb/tidb1
xxx.xxx.xxx.xxx:5002 tidb xxx.xxx.xxx.xxx 5002/10082 linux/x86_64 Up - /tidb/tidb2
xxx.xxx.xxx.xxx:9000 tiflash xxx.xxx.xxx.xxx 9000/8123/3930/20170/20292/8234 linux/x86_64 Up /data01/tiflash,/data02/tiflash,/data03/tiflash /tidb/tiflash-9000
xxx.xxx.xxx.xxx:9000 tiflash xxx.xxx.xxx.xxx 9000/8123/3930/20170/20292/8234 linux/x86_64 Up /data01/tiflash,/data02/tiflash,/data03/tiflash /tidb/tiflash-9000
xxx.xxx.xxx.xxx:9000 tiflash xxx.xxx.xxx.xxx 9000/8123/3930/20170/20292/8234 linux/x86_64 Up /data01/tiflash,/data02/tiflash,/data03/tiflash /tidb/tiflash-9000
xxx.xxx.xxx.xxx:20171 tikv xxx.xxx.xxx.xxx 20171/20181 linux/x86_64 Up /data01/tikv /tidb/tikv1
xxx.xxx.xxx.xxx:20172 tikv xxx.xxx.xxx.xxx 20172/20182 linux/x86_64 Up /data02/tikv /tidb/tikv2
xxx.xxx.xxx.xxx:20173 tikv xxx.xxx.xxx.xxx 20173/20183 linux/x86_64 Up /data03/tikv /tidb/tikv3
xxx.xxx.xxx.xxx:20171 tikv xxx.xxx.xxx.xxx 20171/20181 linux/x86_64 Up /data01/tikv /tidb/tikv1
xxx.xxx.xxx.xxx:20172 tikv xxx.xxx.xxx.xxx 20172/20182 linux/x86_64 Up /data02/tikv /tidb/tikv2
xxx.xxx.xxx.xxx:20173 tikv xxx.xxx.xxx.xxx 20173/20183 linux/x86_64 Up /data03/tikv /tidb/tikv3
xxx.xxx.xxx.xxx:20171 tikv xxx.xxx.xxx.xxx 20171/20181 linux/x86_64 Up /data01/tikv /tidb/tikv1
xxx.xxx.xxx.xxx:20172 tikv xxx.xxx.xxx.xxx 20172/20182 linux/x86_64 Up /data02/tikv /tidb/tikv2
xxx.xxx.xxx.xxx:20173 tikv xxx.xxx.xxx.xxx 20173/20183 linux/x86_64 Up /data03/tikv /tidb/tikv3
xxx.xxx.xxx.xxx:20171 tikv xxx.xxx.xxx.xxx 20171/20181 linux/x86_64 Up /data01/tikv /tidb/tikv1
xxx.xxx.xxx.xxx:20172 tikv xxx.xxx.xxx.xxx 20172/20182 linux/x86_64 Up /data02/tikv /tidb/tikv2
xxx.xxx.xxx.xxx:20173 tikv xxx.xxx.xxx.xxx 20173/20183 linux/x86_64 Up /data03/tikv /tidb/tikv3
xxx.xxx.xxx.xxx:20171 tikv xxx.xxx.xxx.xxx 20171/20181 linux/x86_64 Up /data01/tikv /tidb/tikv1
xxx.xxx.xxx.xxx:20172 tikv xxx.xxx.xxx.xxx 20172/20182 linux/x86_64 Up /data02/tikv /tidb/tikv2
xxx.xxx.xxx.xxx:20173 tikv xxx.xxx.xxx.xxx 20173/20183 linux/x86_64 Up /data03/tikv /tidb/tikv3
[Issue Manifestation]
Failed to collect statistics for large table:
xxxxx xxxxxxx auto analyze table all columns with 256 buckets, 500 topn, 4.4275116274756925e-05 samplerate 2027279994 2023-04-02 18:18:27 2023-04-03 06:18:27 failed [tikv:1317]Query execution was interrupted 172.17.3.111:5002
Data volume in the table:
24 8795 7795
Database GC parameters: tidb_gc_life_time 24 hours.
tidb_enable_gc_aware_memory_track | OFF |
---|---|
tidb_enable_gogc_tuner | ON |
tidb_gc_concurrency | -1 |
tidb_gc_enable | ON |
tidb_gc_life_time | 24h0m0s |
tidb_gc_max_wait_time | 86400 |
tidb_gc_run_interval | 10m0s |
tidb_gc_scan_lock_mode | LEGACY |
tidb_gogc_tuner_threshold | 0.6 |
tidb_server_memory_limit_gc_trigger | 0.7 |
Is there any good optimization method for collecting statistics on large tables?